Telegram Group & Telegram Channel
Forwarded from Speech Info
WavChat: A Survey of Spoken Dialogue Models. Часть 1/4

Сегодня поделимся суммаризацией главным из большого обзора разговорных ИИ. Сначала он кажется неплохой попыткой систематизировать происходящее в мире ALM: авторы анализируют тренды и на основе существующих публикаций пытаются понять, куда всë идёт и как было бы лучше. Но в какой-то момент статья начинает повторять саму себя. Тем не менее, лучшей попытки осознать происходящее мы не нашли. Давайте разбираться.

Идея объединить аудиомодальность с LLM давно будоражит умы академии и индустрии. Но долгое время никто толком не мог понять, для чего это нужно. Первой значимой попыткой можно назвать Whisper, который заставил seq2seq-модель предсказывать не только ASR, но и перевод.

На диаграмме легко заметить, какой именно момент развития ALM стал переломным и сделал очевидным, что нужно двигаться к разговорным моделям: когда коммьюнити узнало о GPT-4o. OpenAI показали, как аудиомодальность может сделать диалог с LLM естественным, почти бесшовным, решая между делом не только задачи распознавания синтеза, но и, например, классификацию скорости дыхания.

Авторы считают, что всё нужно свести к voice-to-voice диалоговому стеку. Его можно собрать из последовательной работы моделей (ASR-LLM-TTS), сделать end2end или составить из частичных фьюзов отдельных компонент. Трёхстадийный каскад ASR-LLM-TTS при этом предлагается считать бейслайном, о который нужно калиброваться. И побеждать его — учиться понимать особенности речи, воспринимать звуки, уместно отвечать или, наоборот, пропускать реплики.

В статье выделяют девять навыков, которыми должны обладать диалоговые модели:

- Text Intelligence;
- Speech Intelligence;
- Audio and Music Generation;
- Audio and Music Understanding;
- Multilingual Capability;
- Context Learning;
- Interaction Capability;
- Streaming Latency;
- Multimodal Capability.

Всё, что опубликовано по теме диалоговых систем за последний год, авторы предлагают классифицировать по разным признакам:

- Архитектура: end2end- и каскадные модели.
- Способ представления звука: токенизация или энкодер.
- Парадигма тренировки: использовали ли пост-претрейн, какие задачи решали.
- Подход к обеспечению диалоговости: стриминг, симплекс, дюплекс, полудюплекс.

Дальше попробуем пошагово проследить эту классификацию.

Продолжение следует.

Никита Рыжиков Специально для Speech Info
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/opendatascience/2264
Create:
Last Update:

WavChat: A Survey of Spoken Dialogue Models. Часть 1/4

Сегодня поделимся суммаризацией главным из большого обзора разговорных ИИ. Сначала он кажется неплохой попыткой систематизировать происходящее в мире ALM: авторы анализируют тренды и на основе существующих публикаций пытаются понять, куда всë идёт и как было бы лучше. Но в какой-то момент статья начинает повторять саму себя. Тем не менее, лучшей попытки осознать происходящее мы не нашли. Давайте разбираться.

Идея объединить аудиомодальность с LLM давно будоражит умы академии и индустрии. Но долгое время никто толком не мог понять, для чего это нужно. Первой значимой попыткой можно назвать Whisper, который заставил seq2seq-модель предсказывать не только ASR, но и перевод.

На диаграмме легко заметить, какой именно момент развития ALM стал переломным и сделал очевидным, что нужно двигаться к разговорным моделям: когда коммьюнити узнало о GPT-4o. OpenAI показали, как аудиомодальность может сделать диалог с LLM естественным, почти бесшовным, решая между делом не только задачи распознавания синтеза, но и, например, классификацию скорости дыхания.

Авторы считают, что всё нужно свести к voice-to-voice диалоговому стеку. Его можно собрать из последовательной работы моделей (ASR-LLM-TTS), сделать end2end или составить из частичных фьюзов отдельных компонент. Трёхстадийный каскад ASR-LLM-TTS при этом предлагается считать бейслайном, о который нужно калиброваться. И побеждать его — учиться понимать особенности речи, воспринимать звуки, уместно отвечать или, наоборот, пропускать реплики.

В статье выделяют девять навыков, которыми должны обладать диалоговые модели:

- Text Intelligence;
- Speech Intelligence;
- Audio and Music Generation;
- Audio and Music Understanding;
- Multilingual Capability;
- Context Learning;
- Interaction Capability;
- Streaming Latency;
- Multimodal Capability.

Всё, что опубликовано по теме диалоговых систем за последний год, авторы предлагают классифицировать по разным признакам:

- Архитектура: end2end- и каскадные модели.
- Способ представления звука: токенизация или энкодер.
- Парадигма тренировки: использовали ли пост-претрейн, какие задачи решали.
- Подход к обеспечению диалоговости: стриминг, симплекс, дюплекс, полудюплекс.

Дальше попробуем пошагово проследить эту классификацию.

Продолжение следует.

Никита Рыжиков Специально для Speech Info

BY Data Science by ODS.ai 🦜




Share with your friend now:
tg-me.com/opendatascience/2264

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Export WhatsApp stickers to Telegram on iPhone

You can’t. What you can do, though, is use WhatsApp’s and Telegram’s web platforms to transfer stickers. It’s easy, but might take a while.Open WhatsApp in your browser, find a sticker you like in a chat, and right-click on it to save it as an image. The file won’t be a picture, though—it’s a webpage and will have a .webp extension. Don’t be scared, this is the way. Repeat this step to save as many stickers as you want.Then, open Telegram in your browser and go into your Saved messages chat. Just as you’d share a file with a friend, click the Share file button on the bottom left of the chat window (it looks like a dog-eared paper), and select the .webp files you downloaded. Click Open and you’ll see your stickers in your Saved messages chat. This is now your sticker depository. To use them, forward them as you would a message from one chat to the other: by clicking or long-pressing on the sticker, and then choosing Forward.

Data Science by ODS ai 🦜 from jp


Telegram Data Science by ODS.ai 🦜
FROM USA